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Note on some characters for fractional (g,f,n)-critical graphs
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Abstract –Many problems in intelligent transportation systems can be modeled by fractional factor. A graph G is called
a fractional (g, f ,n)-critical graph, if any n vertices is removed from G, then the remaining graph remain has a fractional
(g,f)-factor. In this paper, several characters for fractional (g, f ,n)-critical graphs are given.
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1. Introduction

Let ))(),(( GEGVG  be a graph with vertex set

)(GV and edge set )(GE . Let ( )Gd x be the degree of

x in G and δ )(G be the minimum vertex degree of G .

For a vertex set  ,GVS  the subgraph of G induced

by S is denoted by  SG , )-( SGi and )-( SGc are
used for the number of isolated vertices and the number
of components in SG - , respectively. A subset I of

)(GV is an independent set if no two vertices of I are

adjacent in G and a set C of )(GV is a covering set if

every edge of G is incident to a vertex in C . For any two

subsets S ,  ,GVT  we denote  ,E S T ={ uv

  :E G ,u S v T  }. The notation and terminology

used but undefined in this paper can be found in [1].
Suppose that g and f are two integer-valued functions

on V(G) such that 0  g(x)  f(x) for all x V(G). A
fractional (g,f)-factor is a function h that assigns to each
edge of a graph G a number in [0,1] so that for each

vertex x we have g(x)  ( )h
Gd x  f(x), where

( )h
Gd x =

( )

( )
e E x

h e

 is called the fractional degree of x

in G. If g(x)=a and f(x)=b for all x  V(G), then a
fractional (g,f)-factor is just a fractional [a,b]-factor. If
g(x)=f(x)=k (k 1 is an integer) for all xV(G), then a
fractional (g,f)-factor is just a fractional k-factor. A graph
G is called a fractional (g, f ,n)-critical graph, if any n
vertices is removed from G, then the remaining graph
remain has a fractional (g,f)-factor. A graph G is
called a fractional (g, f)-deleted graph, if any edge e
is removed from G, then the remaining graph remain
has a fractional (g,f)-factor. If g(x)=a and f(x)=b for all
x  V(G), then fractional (g,f,n)-critical graph and
fractional (g,f)-deleted graph are just a fractional [a,b,n]-
critical graph and [a,b]-deleted graph, respectively. If
g(x)=f(x)=k (k  1 is an integer) for all xV(G), then
fractional (g,f,n)-critical graph and fractional (g,f)-deleted

graph are just a fractional [k,n]-critical graph and k-
deleted graph, respectively.

Many networks problems in the real-world can be
modeled by fractional factor. In such a network, an
important example of is an intelligent transportation
systems with vertices and edges modeling cities and
communication channels, respectively. Other
examples are the railroad network with vertices and
edges representing railroad stations and railways
between two stations, respectively.

Heinrich et al. [2] gave a necessary and sufficient
condition of ( g < f )-factors given by

Theorem 1. [2] Let  xg and  xf be non-negative

integral-valued functions defined on )(GV . If either one
of the following conditions holds
(i)  xg <  xf for every vertex  GVx  ;

(ii) G is bipartite;
then G has a ( , )g f -factor if and only if for any set S
of )(GV

     G Sg T d T f S 
Where

 : ( ) , ( ) ( ) .G ST x x V G S d x g x   
In the above theorem, to confirm a graph possessing (g,

f)-factors, we need only to verify the much simpler
inequality above for every vertex set S , in contrast with
the verification of a more complex inequality for all
possible pair of disjoint vertex sets ( S ,T ) in Lovasz’s
original characterization of general ( , )g f -factor. This
simpler criterion enables us to deal with factor problems
with additional properties.

Let    g x a b f x   in Theorem 1, it yields a

necessary and sufficient condition for existence of [a, b]-
factors.
Theorem 2. [3] Let G be a graph and let ba  be two
positive integers. Then G has an [a, b]-factor if and only
if for any  ,GVS 

 G Sa T d T b S 
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holds, where

 : ( ) , ( ) -1 .G ST x x V G S d x a   
Then G has [a, b]-factors.

As for fractional (g,f)-factor, Liu and Zhang [4]
obtained the necessary and sufficient condition for
existence of fractional (g,f)-factors.
Theorem 3. [4] Let  xg and  xf be non-negative

integral-valued functions defined on )(GV satisfying

g(x)  f(x) for all xV(G). G has a fractional ( , )g f -

factor if and only if for any subset S of )(GV

     G Sg T d T f S  .

Where

 : ( ) , ( ) ( ) .G ST x x V G S d x g x   
Liu [5] gave the necessary and sufficient condition

for fractional (g,f,n)-critical graphs.
Theorem 4. [5] Let  xg and  xf be non-negative

integral-valued functions defined on )(GV satisfying
g(x) f(x) for all xV(G). Let n be a positive integer.
G is a fractional ( , , )g f n -critical graph if and only if

for any subset S of )(GV with S  n,

      ( )G S ng T d T f S f S  
Where

 : ( ) , ( ) ( )G ST x x V G S d x g x    ,

and

( ) max{ ( ) : , }nf S f U U S U n   .

In this paper, we obtain some results for fractional (g, f
,n)-critical graph.

2. Main results and proofing

Throughout the paper, we always assume that a,b and
n are positive integers satisfying 1 .a b  So we will
not reiterate these condition again in the theorems or
proofs. The main results in this paper are given below.
Theorem 5. Let G be a graph and  xg ,  xf be two
non-negative integral-valued functions defined on

)(GV satisfying a  g(x)<f(x)  b for all x  V(G).

 G b n   . If, for any arbitrary n-subset V’

  ,V G G V  has fractional (g,f)-factors, then, for any

( -1)n -subset   VGGVV  , has fractional (g,f)-
factors as well.

The second result present a different type of sufficient
condition for the existence of fractional (g,f)-factors
excluding any edge of  GE .

Theorem 6. Let G be a graph and  xg ,  xf be two
non-negative integral-valued functions defined on

)(GV satisfying a  g(x)<f(x)  b for all x  V(G).

  2G b   . If  yxG , has fractional (g,f)-factors

for every pair of vertices  GVyx , then eG  has

fractional (g,f)-factors for any given edge  GEe .
Proof Theorem 5. We verify the theorem for the case
of =1n first, i.e., the following claim:
Claim. If G x has fractional (g,f)-factors for

any  x V G , then G has fractional (g,f)-factors.

Otherwise, G has no fractional (g,f)-factors and
thus, by Theorem 3, there exists ( )S V G such that

 G Sb T d T a S  , Where

     : , -1G ST x x V G S d x b    .

Choose a vertex v from S, let ' { }S S v  , then

 { } - 'G v S G S   ,

and

   { : - ', - ' -1}=G Sx x V G v S d S x b T   .

Therefore we have

  ' = - <G Sb T d T a S a S a a S 
since -G v has fractional (g,f)-factors, a contradiction

since  G Sb T d T a S  . Hence, G has

fractional (g,f)-factors.
Applying the above claim and using induction

arguments, we can see that G V  has fractional
(g,f)-factors for any 1n subset V  if G V  has
fractional (g,f)-factors for any n -subsetV  .

Next we present a characterization for fractional
(g,f)-factors excluding an edge. As an application,
Theorem 6 can be easily derived from it. In fact, the
lemma itself is of interest.
Lemma 1. [6] Let G be a graph and =e uv be any
edge of G .  xg ,  xf be two non-negative

integral-valued functions defined on )(GV
satisfying a  g(x)<f(x)  b for all xV(G). Then G
has fractional (g,f)-factors excluding the edge e if
and only if

 ( ) ( ) ( )G Sf S g T d T S    (1)

holds for any   ,S V G where G G e   ,

 : ( ) , ( ) ( ) ,G ST x x V G S d x g x     and

   
2, { , } '

= 1, one of{ , }lies in and the other is in -

0, otherwise.

u v T

S u v T G S T


  





Proof of Theorem 6. Let S be any subset of  V G .

If S  then T  and

( ) ( ) ( )G Sf S g T d T  =0=  S .

If =1S , then =0T (since   +2G b ) and thus

( ) ( ) ( )= 1G Sf S g T d T a S a    .
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If 2S  , then there exist vertices ,x y S . Let

 ,V x y  in Lemma 1, since  ,G x y has

fractional (g,f)-factors, then we have
( ) ( ) ( ) 2 2G Sf S g T d T a    .

Therefore, we conclude (1) for any ( )S V G . By

Lemma 1, G e has fractional (g,f)-factors.

3. Conclusions

In this paper, two characters for fractional (g, f ,n)-
critical graphs are given. The first character shows that

under the condition  G b n   . If G is a fractional

(g, f ,n)-critical graph, then G is a fractional (g, f ,n-1)-
critical graph as well. The second character shows that

under the condition  G b n   . If G is a fractional

(g, f ,2)-critical graph, then G is a fractional (g,f)-deleted
graph.
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